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ABSTRACT 
The article discusses research on a 

wearable medical diagnostic system using 
electrical impedance tomography. This system 
aims to diagnose long-term respiratory diseases. It 
seeks to reduce the number of tests needed for 
accurate diagnoses, thus saving time. The article 
compares two classification models for 
distinguishing between diseased and healthy 
individuals.  
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Introduction [4] 
Respiratory diseases are a growing problem in 

society, with common examples including chronic 
obstructive pulmonary disease (COPD), acute 
respiratory distress syndrome (ARDS), 
pneumothorax (PTX), pneumonia (PNA), 
bronchospasm, and pulmonary hypertension 
(PHTN). In medicine, various tests help diagnose 
respiratory diseases like spirometry, chest 
computed tomography, lung ultrasonography [6]. 
A solution will be presented that allows for an 
approximate diagnosis in just a few minutes. 

The future of medical diagnostics relies on 
devices that enable long-term patient monitoring, 
which allows for the detection of pathological 
conditions. The Lung Electrical Tomography 
System (LETS) is responding to the demand of the 
medical market. It is a mobile electrical impedance 
tomography system in three spatial dimensions for 
area monitoring. The system consists of the vest 
(Figure 1), the measuring device and the analytics 
engine LETSWEB. 

METHOD 

The Vest has 32 electrodes dedicated to 
electrical impedance tomography, arranged on two 
planes with 16 on each one. Current injections are 
opposite and occur only between electrodes on the 
same level. Voltages are measured between 
adjacent electrodes. This configuration results in a 
data frame containing 448 independent voltages. 
Another component of the LETS, the analytics 
engine LETSWEB, is responsible for aggregating, 
processing and inferring from collected medical 
data. 

 
Figure 1: Developed vest with 102 textile 

electrodes. 
Numerical models were constructed to 

include a broad range of both diseased and healthy 
cases (example healthy and ARDS models 
correspond to Figure 2). Next, material parameters 
for the human body were identified. Several stages 

of disease progression were considered, with three 
stages for ARDS and four for the remaining 
conditions. To prepare the dataset, simulations of 
electrical impedance tomography measurements 
were performed using the finite element method. 

 
Figure 2: Model of healthy lungs and lungs 

with ARDS disease. 
 

The models consist of at most seven 
components: 1 – torso without lungs, 2 - left lung 
without bronchi and blood vessels around the 
bronchi, 3 - right lung without bronchi and 
surrounding blood vessels, 4 - bronchi, 5 - blood 
vessels surrounding the bronchi, 6 - region with 
lesions corresponding to the disease, and 7 – area 
showcasing a secondary lesion (specifically 
utilized for pneumonia). The values in Tables 1 and 
2 present normalized material parameters for all 
considered disease cases. 
 
Table 1: Coefficients material parameters 
normalised (Part 1)[1] 

Condition 1 2 3 4 
Healthy patient 1.0 0.2410 0.2410 2.2⋅10-10 
COPD 1.0 0.2410 0.2410 2.2⋅10-10 
ARDS  1.0 0.2410 0.2410 2.2⋅10-10 
PTX 1.0 0.2627 0.2410 2.2⋅10-10 
PNA 1.0 0.2410 0.2410 2.2⋅10-10 
Bronchial spasm 1.0 0.2410 0.2410 (1) 
PHTN 1.0 0.2410 0.2410 2.2⋅10-10 

 
Table 2: Coefficients material parameters 
normalised (Part 2)[1] 

Condition 5 6 7 
Healthy patient 1.4370 − − 
COPD 1.4370 (3) − 
ARDS  1.4370 5.8115 − 
PTX 1.4370 2.2⋅10-10 − 
PNA 1.4370 0.0035 0.0070 
Bronchial spasm 1.4370 − − 
PHTN (2) − − 
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Where 𝜎air = 10456, 𝜎blood = 0.6625,  
𝜎bronchi = 0.5576, 𝜎blood	vessel	wall = 0.2320, 
𝜎ref = 0.4610, 𝜎lung = 0.1111. All values are 
expressed in units of 𝑆/𝑚. The equation 1,2 and 3 
have variable 𝛼 which is value from set {0.1, 0.3, 
0.5, 0.7}. The variable 𝛼 is accountable for the 
degree or advancement of the disease state. The 
parameter 𝛼 defines the degree to which the 
bronchi reduce their lumen during bronchial spasm, 
expressed as a percentage. In PHTN, it describes 
the degree to which blood vessels constrict, and in 
COPD, it represents the extent of fluid 
accumulation at the lung boundaries.  

To distinguish between individuals with 
respiratory diseases and healthy subjects, two 
advanced classification models were compared: a 
Multi-layer Perceptron (MLP) classifier and a 
Gradient Boosting Classifier (GBC).  

The Boruta algorithm was used for feature 
selection by iteratively eliminating features 
deemed less relevant than random probes. By 
comparing the importance of the original features 
with shadow features, Boruta retained only those 
significantly more important [5]. Using this 
approach, the Boruta algorithm identified 300 of 
the most significant features out of 448. MLP, a 
feedforward artificial neural network, uses 
backpropagation for training and involves multiple 
layers of input nodes [3], with optimal parameters 
selected using the GridSearchCV function. GBC 
used decision trees as base learners, with each tree 
correcting the errors of the preceding ones through 
gradient descent [2].  

The study’s dataset was generated through 
simulations of electrical impedance tomography 
(EIT) data frames to model the electrical properties 
of lung tissue, providing detailed impedance 
variations associated with respiratory health and 
disease states. 

RESULTS AND DISCUSS 
A training model dataset was constructed with 
30,240 cases, and a testing set with 9,072 cases. 
The training set had 21,168 observations after 
processing. The MLP classifier achieved 84.06% 
accuracy, while the Gradient Boosting Classifier 
achieved 83.18%. The study highlights the 
potential of EIT-based diagnostic systems in 
improving respiratory disease diagnosis efficiency 
and accuracy. This article presents the application 
of electrical impedance tomography (EIT) for 
diagnosing six lung diseases (COPD, ARDS, PTX, 
PNA, bronchospasm, PHTN). Future work will 
analyze temporal data with more complicated 
models and using recurrent and convolutional 
neural networks to understand temporal 
dependencies and detect spatial patterns.  
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